Physique Statistique

ECOLE NATIONALE SUPÉRIEURE DE TECHNIQUES AVANCÉES

LABORATOIRE DE MATHÉMATIQUES APPLIQUÉES

Le gaz parfait de bosons

Nombre de photons NON conservé : création-anhilation permanente

Nombre de photons NON conservé : création-anhilation permanente

À l'équilibre le nombre moyen n_i^o de photons d'énergie $\varepsilon \in [\varepsilon_i, \varepsilon_i + d\varepsilon_i]$ est donné par la distribution de Bose-Einstein

$$n_i^o = rac{g_i}{e^{eta arepsilon_i} - 1} \quad g_i$$
: dégénérescence associée à l'état d'énergie $arepsilon_i$.

Nombre de photons NON conservé : création-anhilation permanente

À l'équilibre le nombre moyen n_i^o de photons d'énergie $\varepsilon \in [\varepsilon_i, \varepsilon_i + d\varepsilon_i]$ est donné par la distribution de Bose-Einstein

$$n_i^o = rac{g_i}{e^{eta arepsilon_i} - 1} \quad g_i$$
: dégénérescence associée à l'état d'énergie $arepsilon_i$.

1 seule contraine : U = cste, 1 seul multiplicateur : $\beta = (kT)^{-1}$

Limite continue de la répartition des niveaux d'énergie $g_i \longrightarrow g(\varepsilon) d\varepsilon$ densité d'états d'énergie : nombre de cellules dont l'énergie est dans l'intervalle $[\varepsilon, \varepsilon + d\varepsilon]$

Limite continue de la répartition des niveaux d'énergie $g_i \longrightarrow g(\varepsilon) d\varepsilon$ densité d'états d'énergie : nombre de cellules dont l'énergie est dans l'intervalle $[\varepsilon, \varepsilon + d\varepsilon]$ Dans l'espace des phases

nombre de cellules correspondant

 $g\left(p
ight)dp$: à une impulsion dont le module est

dans l'intervalle [p, p + dp]

Densité d'états

Limite continue de la répartition des niveaux d'énergie $g_i \longrightarrow g(\varepsilon) d\varepsilon$ densité d'états d'énergie : nombre de cellules dont l'énergie est dans l'intervalle $[\varepsilon, \varepsilon + d\varepsilon]$ Dans l'espace des phases

nombre de cellules correspondant

 $g\left(p
ight)dp$: à une impulsion dont le module est

dans l'intervalle [p, p + dp]

Ce nombre correspond à un certain volume Ω de l'espace des phases

$$\Omega = \int_{p' \in [p, p+dp]} d\mathbf{x}' d\mathbf{p}' = V \int_{p' \in [p, p+dp]} d\mathbf{p}' = 4\pi V \int_{p}^{p+dp} p'^2 dp'$$
$$= 4\pi V p^2 dp + o(dp)$$

Densité d'états

Limite continue de la répartition des niveaux d'énergie $g_i \longrightarrow g(\varepsilon) d\varepsilon$ densité d'états d'énergie : nombre de cellules dont l'énergie est dans l'intervalle $[\varepsilon, \varepsilon + d\varepsilon]$ Dans l'espace des phases

nombre de cellules correspondant

 $g\left(p
ight)dp$: à une impulsion dont le module est

dans l'intervalle [p, p + dp]

Ce nombre correspond à un certain volume Ω de l'espace des phases

$$\Omega = \int_{p' \in [p, p+dp]} d\mathbf{x}' d\mathbf{p}' = V \int_{p' \in [p, p+dp]} d\mathbf{p}' = 4\pi V \int_{p}^{p+dp} p'^2 dp'$$
$$= 4\pi V p^2 dp + o(dp)$$

On connaît le volume $\delta = h^3$ d'une cellule, on a donc $g(p) dp = \frac{\Omega}{\delta}$ et finalement

$$g\left(p\right)dp = \frac{4\pi V p^2 dp}{h^3}$$

$$g(\varepsilon) d\varepsilon = 2 \times \frac{4\pi V \varepsilon^2 d\varepsilon}{c^3 h^3}$$
 1 \overrightarrow{p} = 2 états de polarisation (1)

$$g(\varepsilon) d\varepsilon = 2 \times \frac{4\pi V \varepsilon^2 d\varepsilon}{c^3 h^3}$$
 1 \overrightarrow{p} = 2 états de polarisation (1)

Finalement

$$n_i^o = \frac{g_i}{e^{\beta \varepsilon_i} - 1} \longrightarrow \frac{8\pi V}{c^3 h^3} \frac{\varepsilon^2 d\varepsilon}{e^{\beta \varepsilon} - 1}$$

$$g(\varepsilon) d\varepsilon = 2 \times \frac{4\pi V \varepsilon^2 d\varepsilon}{c^3 h^3}$$
 1 \overrightarrow{p} = 2 états de polarisation (1

Finalement

$$n_i^o = \frac{g_i}{e^{\beta \varepsilon_i} - 1} \longrightarrow \frac{8\pi V}{c^3 h^3} \frac{\varepsilon^2 d\varepsilon}{e^{\beta \varepsilon} - 1}$$

Relation d'Einstein $\varepsilon = h\nu$, s'écrit

$$\rho\left(\nu\right)d\nu = \frac{h\nu}{V}n^{o} = \frac{8\pi h}{c^{3}}\frac{\nu^{3}}{e^{\beta h\nu} - 1}d\nu$$

Densité spectrale d'énergie Loi de Planck - 1900

(2)

$$g(\varepsilon) d\varepsilon = 2 \times \frac{4\pi V \varepsilon^2 d\varepsilon}{c^3 h^3}$$
 1 \overrightarrow{p} = 2 états de polarisation (1)

Finalement

$$n_i^o = \frac{g_i}{e^{\beta \varepsilon_i} - 1} \longrightarrow \frac{8\pi V}{c^3 h^3} \frac{\varepsilon^2 d\varepsilon}{e^{\beta \varepsilon} - 1}$$

Relation d'Einstein $\varepsilon = h\nu$, s'écrit

$$\rho(\nu) d\nu = \frac{h\nu}{V} n^{o} = \frac{8\pi h}{c^{3}} \frac{\nu^{3}}{e^{\beta h\nu} - 1} d\nu$$
Densité spectrale d'énergie
Loi de Planck - 1900 (2)

On en déduit la densité totale d'énergie \mathcal{U} émise dans tout le spectre de fréquence

$$\mathcal{U} = \int_0^{+\infty} \rho(\nu) \, d\nu = \frac{8\pi h}{c^3} \int_0^{+\infty} \frac{\nu^3}{e^{\beta h\nu} - 1} d\nu$$
$$= \frac{8\pi}{\beta^4 h^3 c^3} \int_0^{+\infty} \frac{x^3}{e^x - 1} dx$$

un pur régal

$$\int_{0}^{+\infty} \frac{x^{3}}{e^{x} - 1} dx = \Gamma(4) \zeta(4) = \frac{\pi^{4}}{15}$$

(3)

un pur régal

$$\int_{0}^{+\infty} \frac{x^{3}}{e^{x} - 1} dx = \Gamma(4) \zeta(4) = \frac{\pi^{4}}{15}$$

donne

$$\mathcal{U} = aT^4 \quad \text{ avec } a = \frac{8\pi^5 k^4}{15h^3c^3}$$

l'énergie totale est simplement

$$U = \mathcal{U}V = aVT^4$$
 Relation de Stéfan-Boltzmann

(4)

(3)

Repartons de la base

$$\frac{S}{k} = \ln W \simeq \sum_{i} \ln (n_i + g_i)! - \ln n_i! - \ln g_i!$$
$$\simeq \sum_{i} n_i \ln \frac{n_i + g_i}{n_i} + g_i \ln \frac{n_i + g_i}{g_i}$$

Repartons de la base

$$\frac{S}{k} = \ln W \simeq \sum_{i} \ln (n_i + g_i)! - \ln n_i! - \ln g_i!$$
$$\simeq \sum_{i} n_i \ln \frac{n_i + g_i}{n_i} + g_i \ln \frac{n_i + g_i}{g_i}$$

À l'équilibre et pour les photons ($\simeq \rightarrow =$)

$$\frac{S}{k} = \sum_{i} \left[n_i^o \beta \varepsilon_i - g_i \ln \left(1 - e^{-\beta \varepsilon_i} \right) \right]$$

Repartons de la base

$$\frac{S}{k} = \ln W \simeq \sum_{i} \ln (n_i + g_i)! - \ln n_i! - \ln g_i!$$
$$\simeq \sum_{i} n_i \ln \frac{n_i + g_i}{n_i} + g_i \ln \frac{n_i + g_i}{g_i}$$

À l'équilibre et pour les photons ($\simeq \rightarrow =$)

$$\frac{S}{k} = \sum_{i} \left[n_i^o \beta \varepsilon_i - g_i \ln \left(1 - e^{-\beta \varepsilon_i} \right) \right]$$

Limite continue

$$\frac{S}{k} = \beta U - \int_0^{+\infty} g(\varepsilon) \, d\varepsilon \ln\left(1 - e^{-\beta\varepsilon}\right)$$
$$= \beta U - \frac{8\pi V}{c^3 h^3} \int_0^{+\infty} \varepsilon^2 \ln\left(1 - e^{-\beta\varepsilon}\right) d\varepsilon$$

$$...S = \frac{4}{3}aVT^3$$
 conforme au principe de Nerst

$$...S = \frac{4}{3}aVT^3$$
 conforme au principe de Nerst

On peut calculer l'énergie libre de Helmholtz

$$F = U - TS = -\frac{1}{3}aVT^4$$

$$...S = \frac{4}{3}aVT^3$$
 conforme au principe de Nerst

On peut calculer l'énergie libre de Helmholtz

$$F = U - TS = -\frac{1}{3}aVT^4$$

et d'en déduire la pression du rayonnement

$$P = -\left(\frac{\partial F}{\partial V}\right)_T = \frac{1}{3}aT^4 = \frac{1}{3}\mathcal{U}$$

$$...S = \frac{4}{3}aVT^3$$
 conforme au principe de Nerst

On peut calculer l'énergie libre de Helmholtz

$$F = U - TS = -\frac{1}{3}aVT^4$$

et d'en déduire la pression du rayonnement

$$P = -\left(\frac{\partial F}{\partial V}\right)_T = \frac{1}{3}aT^4 = \frac{1}{3}\mathcal{U}$$

Exercice : Émission d'un corps noir

Propriétés des solides

Dès 1819, Dulong et Petit : c_V d'un solide = 3R

Premier pas vers l'équipartition de l'énergie

Propriétés des solides

Expérimentalement, on constate un comportement du type $c_V \propto T^3$ lorsque $T \rightarrow 0$!

Classique \longrightarrow Quantique : Einstein, 1907 ; Debye, 1912

Le modèle d'Einstein (1907)

🕷 🖤 🖤 Le modèle d'Einstein (1907)

Solide : assemblée d'oscillateurs harmoniques quantiques 3D, découplés et vibrant à la pulsation ω_E .

🕷 🖤 🖤 Le modèle d'Einstein (1907)

Solide : assemblée d'oscillateurs harmoniques quantiques 3D, découplés et vibrant à la pulsation ω_E .

🕷 🍏 💆 Le modèle d'Einstein (1907)

Solide : assemblée d'oscillateurs harmoniques quantiques 3D, découplés et vibrant à la pulsation ω_E .

Statistique de Maxwell-Boltzmann Corrigée --> Fonction de partition

Le modèle d'Einstein (1907)

Solide : assemblée d'oscillateurs harmoniques quantiques 3D, découplés et vibrant à la pulsation ω_E .

Statistique de Maxwell-Boltzmann Corrigée --> Fonction de partition

$$Z = \frac{e^{-\frac{3}{2}\beta\hbar\omega_E}}{\left(1 - e^{-\beta\hbar\omega_E}\right)^3}$$

$$U = -N\left(\frac{\partial \ln Z}{\partial \beta}\right)_V = \dots = \frac{3}{2}N\hbar\omega_E + \frac{3N\hbar\omega_E}{e^{\beta\hbar\omega} - 1}$$

$$U = -N\left(\frac{\partial \ln Z}{\partial \beta}\right)_V = \dots = \frac{3}{2}N\hbar\omega_E + \frac{3N\hbar\omega_E}{e^{\beta\hbar\omega} - 1}$$

puis la capacité calorifique à volume constant

$$C_V = -k\beta^2 \left(\frac{\partial U}{\partial \beta}\right)_V = \dots = 3Nk \left(\hbar\omega_E\beta\right)^2 \frac{e^{\beta\hbar\omega_E}}{\left(e^{\beta\hbar\omega_E} - 1\right)^2}$$

$$U = -N\left(\frac{\partial \ln Z}{\partial \beta}\right)_V = \dots = \frac{3}{2}N\hbar\omega_E + \frac{3N\hbar\omega_E}{e^{\beta\hbar\omega} - 1}$$

puis la capacité calorifique à volume constant

$$C_V = -k\beta^2 \left(\frac{\partial U}{\partial \beta}\right)_V = \dots = 3Nk \left(\hbar\omega_E\beta\right)^2 \frac{e^{\beta\hbar\omega_E}}{\left(e^{\beta\hbar\omega_E} - 1\right)^2}$$

 \rightarrow Température d'Einstein : $\theta_E = \frac{\hbar \omega_E}{k}$ on obtient

$$C_V = 3Nk \ f_E(\xi) \quad \text{avec } f_E(\xi) = \xi^2 \frac{e^{\xi}}{(e^{\xi} - 1)^2} \quad \text{et } \xi = \frac{\theta_E}{T}$$

$$U = -N\left(\frac{\partial \ln Z}{\partial \beta}\right)_V = \dots = \frac{3}{2}N\hbar\omega_E + \frac{3N\hbar\omega_E}{e^{\beta\hbar\omega} - 1}$$

puis la capacité calorifique à volume constant

$$C_V = -k\beta^2 \left(\frac{\partial U}{\partial \beta}\right)_V = \dots = 3Nk \left(\hbar\omega_E\beta\right)^2 \frac{e^{\beta\hbar\omega_E}}{\left(e^{\beta\hbar\omega_E} - 1\right)^2}$$

 \rightarrow Température d'Einstein : $\theta_E = \frac{\hbar \omega_E}{k}$ on obtient

$$C_V = 3Nk \ f_E(\xi) \quad \text{avec } f_E(\xi) = \xi^2 \frac{e^{\xi}}{(e^{\xi} - 1)^2} \quad \text{et } \xi = \frac{\theta_E}{T}$$

quelques développements donnent

$$f_E\left(\xi\right) = \begin{cases} 1 - \frac{1}{12}\xi^2 + o\left(\xi^2\right) & \text{si} \quad \xi \ll 1 \quad \text{et donc } T \gg \theta_E \\ \\ \xi^2 e^{-\xi} + o\left(e^{-\xi}\right) & \text{si} \quad \xi \gg 1 \quad \text{et donc } T \to 0 \end{cases}$$

Presque correct !

Réseaux d'oscillateurs

Equations du mouvement de chaque masse

$$\begin{cases} \alpha \ddot{u}_{p} + \Omega^{2} \left(2u_{p} - v_{p-1} - v_{p} \right) = 0 \\ \ddot{v}_{p} + \Omega^{2} \left(2v_{p} - u_{p+1} - u_{p} \right) = 0 \end{cases} \text{ avec } \Omega^{2} = \frac{k}{m} \end{cases}$$

Réseaux d'oscillateurs

Equations du mouvement de chaque masse

$$\begin{cases} \alpha \ddot{u}_p + \Omega^2 \left(2u_p - v_{p-1} - v_p \right) = 0\\ \ddot{v}_p + \Omega^2 \left(2v_p - u_{p+1} - u_p \right) = 0 \end{cases} \quad \text{avec } \Omega^2 = \frac{k}{m} \end{cases}$$

Solutions: modes propres, paramétrés par la pulsation ω et le nombre d'onde k

$$u_n(t) = U_n e^{i(kn\ell - \omega t)}$$
 et $v_n(t) = V_n e^{i(kn\ell - \omega t)}$

Réseaux d'oscillateurs

Equations du mouvement de chaque masse

$$\begin{cases} \alpha \ddot{u}_p + \Omega^2 \left(2u_p - v_{p-1} - v_p \right) = 0\\ \ddot{v}_p + \Omega^2 \left(2v_p - u_{p+1} - u_p \right) = 0 \end{cases} \quad \text{avec } \Omega^2 = \frac{k}{m} \end{cases}$$

Solutions: modes propres, paramétrés par la pulsation ω et le nombre d'onde k

$$u_n(t) = U_n e^{i(kn\ell - \omega t)}$$
 et $v_n(t) = V_n e^{i(kn\ell - \omega t)}$

2 relations de dispersion ...

-3

-2

-1

Approximation usuelle :

The set of the set o

$$\omega_{\mathsf{op}}\left(k\right) = \omega_o = cste$$

$$\forall k \in \left[-\frac{\pi}{\ell}, +\frac{\pi}{\ell}\right] \tag{5}$$

0

2

1 Mode optique : ω est indépendant de k

$$\omega_{\text{op}}(k) = \omega_o = cste \quad \forall k \in \left[-\frac{\pi}{\ell}, +\frac{\pi}{\ell}\right]$$

Mode acoustique : relation linéaire

$$\omega_{\mathsf{ac}} = c_s \left| k
ight| \hspace{0.5cm} orall k \in \left[-rac{\pi}{\ell}, +rac{\pi}{\ell}
ight]$$

 c_s : vitesse du son dans le solide

(5)

(6)

Solide homogène maille monoatomique de taille ℓ

Solide homogène maille monoatomique de taille ℓ

3 modes de propagation acoustiques pour les vibrations du réseau

Pour
$$i = 1, 2, 3$$
 $\omega = c_{s,i} |k|$ $\forall k \in \left[-\frac{\pi}{\ell}, +\frac{\pi}{\ell}\right]$

Solide homogène maille monoatomique de taille ℓ

3 modes de propagation acoustiques pour les vibrations du réseau

Pour
$$i = 1, 2, 3$$
 $\omega = c_{s,i} |k|$ $\forall k \in \left[-\frac{\pi}{\ell}, +\frac{\pi}{\ell}\right]$

Modèle de Debye :2 modes transverses $c_{s,1} = c_{s,2} := c_t$ 1 mode longitudinal $c_{s,3} := c_l$ Introduction du concept de phonon acoustique ...

Le modèle de Debye (1912)

Solide homogène maille monoatomique de taille ℓ

3 modes de propagation acoustiques pour les vibrations du réseau

Pour
$$i = 1, 2, 3$$
 $\omega = c_{s,i} |k|$ $\forall k \in \left[-\frac{\pi}{\ell}, +\frac{\pi}{\ell}\right]$

2 modes transverses $c_{s,1} = c_{s,2} := c_t$ Modèle de Debye : 1 mode longitudinal $c_{s,3} := c_l$ Introduction du concept de phonon acoustique ...

Photon $\Leftrightarrow \varepsilon = cp = \hbar\omega$

🕷 🖤 🖤 🛛 Le modèle de Debye (1912)

Solide homogène maille monoatomique de taille ℓ

3 modes de propagation acoustiques pour les vibrations du réseau

Pour
$$i = 1, 2, 3$$
 $\omega = c_{s,i} |k|$ $\forall k \in \left[-\frac{\pi}{\ell}, +\frac{\pi}{\ell}\right]$

Modèle de Debye :2 modes transverses $c_{s,1} = c_{s,2} := c_t$ 1 mode longitudinal $c_{s,3} := c_l$

Photon $\Leftrightarrow \varepsilon = cp = \hbar\omega$ Vibration du reseaux \Leftrightarrow Oscillateurs harmoniques quantiques : $\varepsilon = \hbar\omega(n + 1/2)$ $\Rightarrow n$ Phonons $\mathbf{p} = \hbar \mathbf{k}, \ \varepsilon = c_s p$

Introduction du concept de phonon acoustique ...

🖗 🖤 🛛 Le modèle de Debye (1912)

Solide homogène maille monoatomique de taille ℓ

3 modes de propagation acoustiques pour les vibrations du réseau

Pour
$$i = 1, 2, 3$$
 $\omega = c_{s,i} |k|$ $\forall k \in \left[-\frac{\pi}{\ell}, +\frac{\pi}{\ell}\right]$

Vibration du reseaux \Leftrightarrow Oscillateurs harmoniques quantiques : $\varepsilon = \hbar \omega (n + 1/2)$ \Rightarrow *n* Phonons $\mathbf{p} = \hbar \mathbf{k}, \varepsilon = c_s p$

Phonons = bosons en nombre non conservé

Modèle de Debye :2 modes transverses $c_{s,1} = c_{s,2} := c_t$ 1 mode longitudinal $c_{s,3} := c_l$ Introduction du concept de phonon acoustique ...

Photon $\Leftrightarrow \varepsilon = cp = \hbar\omega$

Dans l'espace des impulsions

$$g\left(p\right)dp = \frac{V4\pi p^{2}dp}{h^{3}}$$

Dans l'espace des impulsions

$$g\left(p\right)dp = \frac{V4\pi p^2 dp}{h^3}$$

2 types d'états d'impulsion

$$g_l(p) dp = \frac{V4\pi\varepsilon^2 d\varepsilon}{c_l^3 h^3}$$
 et $g_t(p) dp = 2 \times \frac{V4\pi\varepsilon^2 d\varepsilon}{c_t^3 h^3}$

Dans l'espace des impulsions

$$g\left(p\right)dp = \frac{V4\pi p^2 dp}{h^3}$$

2 types d'états d'impulsion

$$g_l(p) dp = \frac{V4\pi\varepsilon^2 d\varepsilon}{c_l^3 h^3}$$
 et $g_t(p) dp = 2 \times \frac{V4\pi\varepsilon^2 d\varepsilon}{c_t^3 h^3}$

Dans l'espace des énergies (modèle de Debye)

$$\begin{split} g\left(\varepsilon\right)d\varepsilon &= \left[g_{l}\left(p\right) + g_{t}\left(p\right)\right]dp\\ &= \frac{4\pi V\varepsilon^{2}d\varepsilon}{h^{3}}\left(\frac{1}{c_{l}^{3}} + \frac{2}{c_{t}^{3}}\right)\\ &= \frac{12\pi V}{c_{s}^{3}h^{3}}\varepsilon^{2}d\varepsilon \quad \text{ avec } \frac{3}{c_{s}^{3}} = \frac{1}{c_{l}^{3}} + \frac{2}{c_{t}^{3}} \end{split}$$

Dans l'espace des impulsions

$$g\left(p\right)dp = \frac{V4\pi p^{2}dp}{h^{3}}$$

2 types d'états d'impulsion

$$g_l(p) dp = \frac{V4\pi\varepsilon^2 d\varepsilon}{c_l^3 h^3}$$
 et $g_t(p) dp = 2 \times \frac{V4\pi\varepsilon^2 d\varepsilon}{c_t^3 h^3}$

Dans l'espace des énergies (modèle de Debye)

$$\begin{split} g\left(\varepsilon\right)d\varepsilon &= \left[g_{l}\left(p\right) + g_{t}\left(p\right)\right]dp\\ &= \frac{4\pi V\varepsilon^{2}d\varepsilon}{h^{3}}\left(\frac{1}{c_{l}^{3}} + \frac{2}{c_{t}^{3}}\right)\\ &= \frac{12\pi V}{c_{s}^{3}h^{3}}\varepsilon^{2}d\varepsilon \quad \text{ avec } \frac{3}{c_{s}^{3}} = \frac{1}{c_{l}^{3}} + \frac{2}{c_{t}^{3}} \end{split}$$

Le nombre total d'états est fixé par le nombre d'oscillateurs

 $\int g(\varepsilon) d\varepsilon = 3N \text{ il faut couper l'intégrale !}$

Température de Debye θ_d telle que

$$\frac{12\pi V}{c_s^3 h^3} \int_0^{\varepsilon_d} \varepsilon^2 d\varepsilon = 3N \quad \Rightarrow \quad \theta_d := \frac{\varepsilon_d}{k} = \left(\frac{3N}{4\pi V}\right)^{1/3} \frac{c_s h}{k}$$

Température de Debye θ_d telle que

$$\frac{12\pi V}{c_s^3 h^3} \int_0^{\varepsilon_d} \varepsilon^2 d\varepsilon = 3N \quad \Rightarrow \quad \theta_d := \frac{\varepsilon_d}{k} = \left(\frac{3N}{4\pi V}\right)^{1/3} \frac{c_s h}{k}$$

L'énergie interne du solide s'écrira donc dans le modèle de Debye

$$U = \int_0^{\varepsilon_d} \varepsilon \, \frac{g(\varepsilon) \, d\varepsilon}{e^{\beta \varepsilon} - 1}$$
$$= \frac{12\pi V}{c_s^3 h^3} \int_0^{\varepsilon_d} \frac{\varepsilon^3}{e^{\beta \varepsilon} - 1} d\varepsilon$$

Température de Debye θ_d telle que

$$\frac{12\pi V}{c_s^3 h^3} \int_0^{\varepsilon_d} \varepsilon^2 d\varepsilon = 3N \quad \Rightarrow \quad \theta_d := \frac{\varepsilon_d}{k} = \left(\frac{3N}{4\pi V}\right)^{1/3} \frac{c_s h}{k}$$

L'énergie interne du solide s'écrira donc dans le modèle de Debye

$$\begin{split} U &= \int_0^{\varepsilon_d} \varepsilon \; \frac{g\left(\varepsilon\right) d\varepsilon}{e^{\beta \varepsilon} - 1} \\ &= \frac{12\pi V}{c_s^3 h^3} \int_0^{\varepsilon_d} \frac{\varepsilon^3}{e^{\beta \varepsilon} - 1} d\varepsilon \end{split}$$

et la capacité calorifique à volume constant

$$C_{V} = -k\beta^{2} \left(\frac{\partial U}{\partial \beta}\right)_{V}$$
$$= \frac{12k\beta^{2}\pi V}{c_{s}^{3}h^{3}} \int_{0}^{\varepsilon_{d}} \frac{\varepsilon^{4}e^{\beta\varepsilon}}{\left(e^{\beta\varepsilon} - 1\right)^{2}} d\varepsilon$$

variables sans dimension $x = \beta \varepsilon$ et $x_d = T/\theta_d$ un peu de calcul ...

$$U = 9Nkx_d^3T \int_0^{1/x_d} \frac{x^3}{e^x - 1} dx \quad \text{et} \ C_V = 9Nkx_d^3 \int_0^{1/x_d} \frac{x^4 e^x}{(e^x - 1)^2} dx$$

variables sans dimension $x = \beta \varepsilon$ et $x_d = T/\theta_d$ un peu de calcul ...

$$U = 9Nkx_d^3T \int_0^{1/x_d} \frac{x^3}{e^x - 1} dx \quad \text{et} \ C_V = 9Nkx_d^3 \int_0^{1/x_d} \frac{x^4 e^x}{(e^x - 1)^2} dx$$

***** Si $T \gg \theta_d$, $x_d \gg 1$,

$$\begin{cases} U = 3NkT + o\left(x_d^{-3}\right) \\ \text{et} \\ C_V = 3Nk + o\left(x_d^{-3}\right) \end{cases}$$

la loi de Dulong et Petit et l'équipartition de l'énergie dont elle découle sont retrouvées !

variables sans dimension $x = \beta \varepsilon$ et $x_d = T/\theta_d$ un peu de calcul ...

$$U = 9Nkx_d^3T \int_0^{1/x_d} \frac{x^3}{e^x - 1} dx \quad \text{et} \ C_V = 9Nkx_d^3 \int_0^{1/x_d} \frac{x^4 e^x}{(e^x - 1)^2} dx$$

\mathbb{S} Si $T \gg \theta_d, x_d \gg 1$,

$$\begin{cases} U = 3NkT + o\left(x_d^{-3}\right) \\ \text{et} \\ C_V = 3Nk + o\left(x_d^{-3}\right) \end{cases}$$

la loi de Dulong et Petit et l'équipartition de l'énergie dont elle découle sont retrouvées !

• Si $T \ll \theta_d$, $x_d \ll 1$,

$$\begin{cases} U = \frac{3\pi^4 Nk}{5\theta_d^3} T^4 \\ \text{et} \\ C_V = \frac{12\pi^4 Nk}{5\theta_d^3} T^3 \end{cases}$$

conforme à l'expérience !

Cristal	$\theta_d [\mathrm{K}]$	Cristal	$\theta_d[\mathrm{K}]$
Aluminium (Al)	426	Platine (Pt)	240
Cadmium (Cd)	134	Silicium (Si)	645*
Chrome (Cr)	610	Argent (Ag)	215
Cuivre (Cu)	315	Étain blanc (α -Sn)	230
Or (Au)	170	Titane (Ti)	420
Fer- α (Fe- α)	464	Tungstène (W)	405
Plomb (Pb)	96	Zinc (Zn)	300
Manganèse- α (Mn- α)	476	Diamant	2340*
Nickel (Ni)	440	Glace	192

toutes les autres grandeurs thermodynamiques sont accessibles au modèle de Debye et permettent de rendre compte de nombreuses de leurs propriétés.

On peut aussi rafiner le modèle !

Bosons en nombre déterminé

$$n^{be}(\varepsilon) = rac{1}{e^{\beta(\varepsilon-\mu)}-1}$$
 μ : potentiel chimique

autres paramètres

Fugacité $\varphi := e^{\beta \mu}$ ou bien $\chi = \beta \mu = \ln \varphi$

Bosons en nombre déterminé

$$n^{be}(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)}-1}$$
 μ : potentiel chimique

autres paramètres

Fugacité
$$\varphi := e^{\beta \mu}$$
 ou bien $\chi = \beta \mu = \ln \varphi$

Attention : $n(\varepsilon) \ge 0$ donc $e^{\beta(\varepsilon-\mu)} > 1 \implies \beta(\varepsilon-\mu) > 0$ et finalement $\varepsilon > \mu$. min (ε) : ε_o = niveau fondamental. Dans le cas d'un gaz parfait l'énergie est purement cinétique $\varepsilon = p^2/2m$ pour chaque particule, le niveau fondamental est donc $\varepsilon_o = 0$.

Bosons en nombre déterminé

$$n^{be}(\varepsilon) = \frac{1}{e^{\beta(\varepsilon-\mu)}-1}$$
 μ : potentiel chimique

autres paramètres

Fugacité
$$\varphi := e^{\beta \mu}$$
 ou bien $\chi = \beta \mu = \ln \varphi$

Attention : $n(\varepsilon) \ge 0$ donc $e^{\beta(\varepsilon-\mu)} > 1 \implies \beta(\varepsilon-\mu) > 0$ et finalement $\varepsilon > \mu$. min (ε) : ε_o = niveau fondamental. Dans le cas d'un gaz parfait l'énergie est purement cinétique $\varepsilon = p^2/2m$ pour chaque particule, le niveau fondamental est donc $\varepsilon_o = 0$.

Pour un gaz parfait de bosons en nombre déterminé on a donc

$$\mu < 0 \quad \text{soit} \begin{cases} \varphi < 1 \\ \text{et} \\ \chi < 0 \end{cases}$$

$$U = \sum_{i} \varepsilon_{i} n_{i}^{o} \quad \text{et } S = k \ln W^{b}$$

$$U = \sum_{i} \varepsilon_{i} n_{i}^{o} \quad \text{ et } S = k \ln W^{b}$$

...Stirling...

$$\ln W^{b} = \beta U - \chi N - \sum_{i} g_{i} \ln \left[1 - \exp\left(\chi - \beta \varepsilon_{i}\right)\right]$$

$$U = \sum_{i} \varepsilon_{i} n_{i}^{o} \quad \text{ et } S = k \ln W^{b}$$

...Stirling...

$$\ln W^{b} = \beta U - \chi N - \sum_{i} g_{i} \ln \left[1 - \exp\left(\chi - \beta \varepsilon_{i}\right)\right]$$

Energie libre de Helmholtz $F = U - TS \dots$

$$F = U - \frac{\ln W}{\beta}$$
$$= \frac{1}{\beta} \left\{ \chi N + \sum_{i} g_{i} \ln \left[1 - \exp \left(\chi - \beta \varepsilon_{i} \right) \right] \right\}$$

(7)

$$U = \sum_{i} \varepsilon_{i} n_{i}^{o} \quad \text{ et } S = k \ln W^{b}$$

...Stirling...

$$\ln W^{b} = \beta U - \chi N - \sum_{i} g_{i} \ln \left[1 - \exp\left(\chi - \beta \varepsilon_{i}\right)\right]$$

Energie libre de Helmholtz $F = U - TS \dots$

$$F = U - \frac{\ln W}{\beta}$$
$$= \frac{1}{\beta} \left\{ \chi N + \sum_{i} g_{i} \ln \left[1 - \exp \left(\chi - \beta \varepsilon_{i} \right) \right] \right\}$$

Limite continue (attention à la validité...)

(7)

$$g\left(p\right)dp = \frac{V}{h^3}4\pi p^2 dp \;.$$

$$g\left(p\right)dp = \frac{V}{h^3}4\pi p^2 dp \; .$$

Gaz parfait de bosons

$$\varepsilon = \frac{p^2}{2m}$$

$$g\left(p\right)dp = \frac{V}{h^3}4\pi p^2 dp \; .$$

Gaz parfait de bosons

$$\varepsilon = \frac{p^2}{2m}$$

À la limite continue, nous avons donc

$$F = \frac{1}{\beta} \left\{ \chi N + \int_0^\infty g(p) \, dp \ln\left[1 - \exp\left(\chi - \beta\varepsilon\right)\right] \right\}$$
$$= \frac{1}{\beta} \left\{ \chi N + \frac{4\sqrt{2}\pi V}{h^3} m^{3/2} \int_0^\infty \sqrt{\varepsilon} \ln\left[1 - \exp\left(\chi - \beta\varepsilon\right)\right] d\varepsilon \right\}$$

$$g\left(p\right)dp = \frac{V}{h^3}4\pi p^2 dp \; .$$

Gaz parfait de bosons

$$\varepsilon = \frac{p^2}{2m}$$

À la limite continue, nous avons donc

$$F = \frac{1}{\beta} \left\{ \chi N + \int_0^\infty g\left(p\right) dp \ln\left[1 - \exp\left(\chi - \beta\varepsilon\right)\right] \right\}$$
$$= \frac{1}{\beta} \left\{ \chi N + \frac{4\sqrt{2}\pi V}{h^3} m^{3/2} \int_0^\infty \sqrt{\varepsilon} \ln\left[1 - \exp\left(\chi - \beta\varepsilon\right)\right] d\varepsilon \right\}$$

on pose $x = \beta \varepsilon$ et on obtient

$$F = \frac{1}{\beta} \left\{ \chi N + \frac{4\sqrt{2}\pi V}{h^3} \left(\frac{m}{\beta}\right)^{3/2} \int_0^\infty \sqrt{x} \ln\left[1 - \exp\left(\chi - x\right)\right] dx \right\}$$

$$F = \frac{1}{\beta} \left\{ \chi N + \frac{2V}{h^3 \sqrt{\pi}} \left(\frac{2\pi m}{\beta}\right)^{3/2} \int_0^\infty \sqrt{x} \ln\left[1 - \exp\left(\chi - x\right)\right] dx \right\}$$

$$F = \frac{1}{\beta} \left\{ \chi N + \frac{2V}{h^3 \sqrt{\pi}} \left(\frac{2\pi m}{\beta}\right)^{3/2} \int_0^\infty \sqrt{x} \ln\left[1 - \exp\left(\chi - x\right)\right] dx \right\}$$

On reconnait la fonction de partition de translation du gaz parfait classique

$$Z = Z\left(V,\beta\right) = \frac{V}{h^3} \left(\frac{2\pi m}{\beta}\right)^{3/2}$$

$$F = \frac{1}{\beta} \left\{ \chi N + \frac{2V}{h^3 \sqrt{\pi}} \left(\frac{2\pi m}{\beta}\right)^{3/2} \int_0^\infty \sqrt{x} \ln\left[1 - \exp\left(\chi - x\right)\right] dx \right\}$$

On reconnait la fonction de partition de translation du gaz parfait classique

$$Z = Z\left(V,\beta\right) = \frac{V}{h^3} \left(\frac{2\pi m}{\beta}\right)^{3/2}$$

pour obtenir

$$F = \frac{N}{\beta} \left[\chi - \frac{1}{\alpha} f(\chi) \right] \text{ avec } \begin{cases} \alpha = \frac{N}{Z} = f'(\chi) = cste \\ f(\chi) = -\frac{2}{\sqrt{\pi}} \int_0^\infty \sqrt{x} \ln\left[1 - \exp\left(\chi - x\right)\right] dx \end{cases}$$

 \longrightarrow On peut calculer toutes les grandeurs thermodynamiques ...

À l'équilibre,

$$n_i = \frac{g_i}{e^{\chi} e^{\beta \varepsilon_i} - 1}$$

À l'équilibre,

$$n_i = \frac{g_i}{e^{\chi} e^{\beta \varepsilon_i} - 1}$$

Le nombre total de bosons considéré est N, il est conservé. Il est clair que

$$N = \sum_{i} \frac{g_i}{e^{-\chi} e^{\beta \varepsilon_i} - 1}$$

À l'équilibre,

$$n_i = \frac{g_i}{e^{\chi} e^{\beta \varepsilon_i} - 1}$$

Le nombre total de bosons considéré est N, il est conservé. Il est clair que

$$N = \sum_{i} \frac{g_i}{e^{-\chi} e^{\beta \varepsilon_i} - 1}$$

Si $T \rightarrow 0$ toutes les particules ont tendance à rejoindre le niveau fondamental $\varepsilon_o = 0$ non dégénéré, on sépare donc sa contribution :

$$N = \frac{(g_o = 1)}{e^{-\chi} - 1} + \sum_{i \neq 0} \frac{g_i}{e^{-\chi} e^{\beta \varepsilon_i} - 1}$$

À l'équilibre,

$$n_i = \frac{g_i}{e^{\chi} e^{\beta \varepsilon_i} - 1}$$

Le nombre total de bosons considéré est N, il est conservé. Il est clair que

$$N = \sum_{i} \frac{g_i}{e^{-\chi} e^{\beta \varepsilon_i} - 1}$$

Si $T \rightarrow 0$ toutes les particules ont tendance à rejoindre le niveau fondamental $\varepsilon_o = 0$ non dégénéré, on sépare donc sa contribution :

$$N = \frac{(g_o = 1)}{e^{-\chi} - 1} + \sum_{i \neq 0} \frac{g_i}{e^{-\chi} e^{\beta \varepsilon_i} - 1}$$

à la limite continue (à discuter)

$$N = \frac{1}{e^{-\chi} - 1} + \int_0^\infty \frac{g\left(\varepsilon\right) d\varepsilon}{e^{\beta \varepsilon - \chi} - 1}$$

À l'équilibre,

$$n_i = \frac{g_i}{e^{\chi} e^{\beta \varepsilon_i} - 1}$$

Le nombre total de bosons considéré est N, il est conservé. Il est clair que

$$N = \sum_{i} \frac{g_i}{e^{-\chi} e^{\beta \varepsilon_i} - 1}$$

Si $T \rightarrow 0$ toutes les particules ont tendance à rejoindre le niveau fondamental $\varepsilon_o = 0$ non dégénéré, on sépare donc sa contribution :

$$N = \frac{(g_o = 1)}{e^{-\chi} - 1} + \sum_{i \neq 0} \frac{g_i}{e^{-\chi} e^{\beta \varepsilon_i} - 1}$$

à la limite continue (à discuter)

$$N = \frac{1}{e^{-\chi} - 1} + \int_0^\infty \frac{g(\varepsilon) d\varepsilon}{e^{\beta \varepsilon - \chi} - 1}$$
$$1 = \frac{1}{N(e^{-\chi} - 1)} + \frac{f'(\chi)}{\alpha}$$

- p. 24/25

...

$$1 = \frac{1}{N\left(e^{-\chi} - 1\right)} + \frac{f'\left(\chi\right)}{\alpha}$$

$$1 = \frac{1}{N\left(e^{-\chi} - 1\right)} + \frac{f'\left(\chi\right)}{\alpha}$$

On sait que :

$$\chi \leq \varepsilon_o = 0 \text{ car } n_i \geq 0$$
 ;

• $f'(\chi) = \sum_{n=1}^{\infty} e^{n\chi}/n^{3/2}$ est positive et croissante, sa valeur maximale $\zeta(3/2)$ est atteinte pour $\chi = 0$;

\bigcirc Pour N fixé, le paramètre α est tel que

$$\alpha = \frac{N}{Z} = \alpha(V,T) = \frac{Nh^3}{V} \left(\frac{1}{2\pi mkT}\right)^{3/2}$$

il est faible pour les hautes températures.

$$1 = \frac{1}{N\left(e^{-\chi} - 1\right)} + \frac{f'\left(\chi\right)}{\alpha}$$

Tant que $\alpha < \zeta (3/2)$, on montre que χ est très négatif

Le premier terme est négligeable devant le second. L'équation $f'(\chi) = \alpha$ admet une solution qui fixe le volume et la température

$$1 = \frac{1}{N\left(e^{-\chi} - 1\right)} + \frac{f'(\chi)}{\alpha}$$

Pour $\alpha = \zeta (3/2)$: $V = V_b$, $T = T_b$ et $\chi < \simeq 0$

On calcule dans ces conditions

$$f'(\chi) = \frac{2}{\sqrt{\pi}} \int_0^\infty \frac{\sqrt{x}}{e^{x-\chi} - 1} dx = \zeta \left(\frac{3}{2}\right) - \sqrt{4\pi \left(-\chi\right)} + o\left(\left(-\chi\right)^{1/2}\right)$$

qui permet d'avoir

$$e^{-\chi} = 1 - \chi + o(\chi) = 1 - \frac{\zeta(3/2)}{N\sqrt{4\pi(-\chi)}} + o\left((-\chi)^{1/2}\right)$$

en identifiant les termes identifiables on obtient finalement

$$\chi = -\left(\frac{\zeta \left(3/2\right)}{N\sqrt{4\pi}}\right)^{2/3}$$

qui, comme prévu et compte-tenu de la valeur de N est pratiquement nul !

$$1 = \frac{1}{N\left(e^{-\chi} - 1\right)} + \frac{f'\left(\chi\right)}{\alpha}$$

Si $\alpha > \zeta \left(3/2 \right)$ alors $\chi \simeq 0^-$

 $f'(\chi)$ stagne à sa valeur maximale.

Alors que $e^{-\chi}$ se rapproche de plus en plus de la valeur 1 pendant que la température baisse ...

Le paramètre α devient de plus en plus grand ...

Le nombre de bosons dans l'état fondamental devient de plus en plus grand !

Il atteind N pour T = 0.

$$l = \frac{1}{N\left(e^{-\chi} - 1\right)} + \frac{f'\left(\chi\right)}{\alpha}$$

En résumé,

tant que V et T permettent d'avoir $\alpha < \zeta (3/2)$ les bosons se répartissent sur tous les niveaux accessibles selon la distribution de Bose-Einstein,

par contre dès que $\alpha \ge \zeta (3/2)$ le niveau fondamental devient macroscopiquement peuplé : le système se condense dans l'espace des énergies, c'est la condensation de Bose-Einstein.

Les propriétés physiques d'un gaz parfait de bosons condensés sont très particulières : He_4 devient superfluide dans l'état condensé dès que T < 2, 2 K.